
Objective
The objective of this laboratory is to produce a PWM signal with a modifiable duty cycle to vary the luminous intensity of an LED.
Preparation
The following schematic details the hardware setup.
Table 1 lists the components used in the schematic.
ID | Component | Manufacturer Part No. | Value | Qty. |
Base Components | ||||
IC1 | MCU | PIC24FJ256GA702-I/SP | – | 1 |
IC2 | Regulator | LM1117T-3.3/NOPB | 3.3V / 800mA | 1 |
C1 & C2 | Capacitor (tantalum) | TAP106K025SRW | 10uF / 25V | 2 |
C3 & C4 | Capacitor (ceramic) | SR155C103KARTR1 | 0.01uF / 50V | 2 |
C5 & C6 | Capacitor (ceramic) | SR155C104KARTR1 | 0.1uF / 50V | 2 |
C7 & C8 | Capacitor (ceramic) | SR151A150JARTR1 | 15pF / 100V | 2 |
C9 | Capacitor (ceramic) | FG16X7R1E106KRT06 | 10uF / 25V | 1 |
Y1 | Crystal | ABL-16.000MHZ-B2 | 16MHz | 1 |
R1 | Resistor | SFR2500001002FR500 | 10kΩ | 1 |
R2 | Resistor | SFR2500001004FR500 | 1MΩ | 1 |
J1 | Header (6-way) (PICkit 5) | 22-27-2061 | – | 1 |
Additional Components | ||||
R3 | Resistor | SFR2500001400FR500 | 140Ω | 1 |
D1 | LED (red) | WP132XID | 10mA | 1 |
Refer to the following source code.
/* PWM (source code) */
/* MCU: PIC24FJ256GA702 */
/* Author: Michael */
/**************************** Configuration Bits ******************************/
// FSEC
#pragma config BWRP = OFF // Boot Segment Write-Protect bit (Boot Segment may be written)
#pragma config BSS = DISABLED // Boot Segment Code-Protect Level bits (No Protection (other than BWRP))
#pragma config BSEN = OFF // Boot Segment Control bit (No Boot Segment)
#pragma config GWRP = OFF // General Segment Write-Protect bit (General Segment may be written)
#pragma config GSS = DISABLED // General Segment Code-Protect Level bits (No Protection (other than GWRP))
#pragma config CWRP = OFF // Configuration Segment Write-Protect bit (Configuration Segment may be written)
#pragma config CSS = DISABLED // Configuration Segment Code-Protect Level bits (No Protection (other than CWRP))
#pragma config AIVTDIS = OFF // Alternate Interrupt Vector Table bit (Disabled AIVT)
// FBSLIM
#pragma config BSLIM = 0x1FFF // Boot Segment Flash Page Address Limit bits (Enter Hexadecimal value)
// FOSCSEL
#pragma config FNOSC = PRIPLL // Oscillator Source Selection (Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL))
#pragma config PLLMODE = PLL96DIV4 // PLL Mode Selection (96 MHz PLL. Oscillator input is divided by 4 (16 MHz input))
#pragma config IESO = OFF // Two-speed Oscillator Start-up Enable bit (Start up with user-selected oscillator source)
// FOSC
#pragma config POSCMD = HS // Primary Oscillator Mode Select bits (HS Crystal Oscillator Mode)
#pragma config OSCIOFCN = ON // OSC2 Pin Function bit (OSC2 is general purpose digital I/O pin)
#pragma config SOSCSEL = OFF // SOSC Power Selection Configuration bits (Digital (SCLKI) mode)
#pragma config PLLSS = PLL_PRI // PLL Secondary Selection Configuration bit (PLL is fed by the Primary oscillator)
#pragma config IOL1WAY = OFF // Peripheral pin select configuration bit (Allow multiple reconfigurations)
#pragma config FCKSM = CSDCMD // Clock Switching Mode bits (Both Clock switching and Fail-safe Clock Monitor are disabled)
// FWDT
#pragma config WDTPS = PS1 // Watchdog Timer Postscaler bits (1:1)
#pragma config FWPSA = PR32 // Watchdog Timer Prescaler bit (1:32)
#pragma config FWDTEN = OFF // Watchdog Timer Enable bits (WDT and SWDTEN disabled)
#pragma config WINDIS = OFF // Watchdog Timer Window Enable bit (Watchdog Timer in Non-Window mode)
#pragma config WDTWIN = WIN50 // Watchdog Timer Window Select bits (WDT Window is 50% of WDT period)
#pragma config WDTCMX = WDTCLK // WDT MUX Source Select bits (WDT clock source is determined by the WDTCLK Configuration bits)
#pragma config WDTCLK = SYSCLK // WDT Clock Source Select bits (WDT uses system clock when active, LPRC while in Sleep mode)
// FPOR
#pragma config BOREN = OFF // Brown Out Enable bit (Brown Out Disabled)
#pragma config LPCFG = OFF // Low power regulator control (No Retention Sleep)
#pragma config DNVPEN = DISABLE // Downside Voltage Protection Enable bit (Downside protection disabled when BOR is inactive)
// FICD
#pragma config ICS = PGD1 // ICD Communication Channel Select bits (Communicate on PGEC1 and PGED1)
#pragma config JTAGEN = OFF // JTAG Enable bit (JTAG is disabled)
// FDEVOPT1
#pragma config ALTCMPI = DISABLE // Alternate Comparator Input Enable bit (C1INC, C2INC, and C3INC are on their standard pin locations)
#pragma config TMPRPIN = OFF // Tamper Pin Enable bit (TMPRN pin function is disabled)
#pragma config SOSCHP = ON // SOSC High Power Enable bit (valid only when SOSCSEL = 1 (Enable SOSC high power mode (default))
#pragma config ALTI2C1 = ALTI2CEN // Alternate I2C pin Location (SDA1 and SCL1 on RB9 and RB8)
/************************* Configuration Bits (end) ***************************/
#define FCY 16000000 // FCY = FOSC / 2 (FCY: Instruction clock cycle) (FOSC: System clock cycle)
#define PWM_Freq 16000
#define PWM_Period ((FCY / PWM_Freq) - 1) // PWM Period (PIC24FJ256GA702 datasheet p.176 Eqn. 15-1)
#include <libpic30.h> // Delay functions
#include <xc.h> // MCU pin mapping
int main(void)
{
// Set pin direction
TRISBbits.TRISB6 = 0; // Set MCU Pin #15 to output (LED)
/************************* configure MCU modules **************************/
// Analog Ports
ANSA = 0; // Disable A (PIC24FJ256GA702 datasheet p.126 Table 11-1)
ANSB = 0;
// Comparators
CM1CONbits.CEN = 0; // Disable #1 (PIC24FJ256GA702 datasheet p.310 Register 25-1)
CM2CONbits.CEN = 0;
CM3CONbits.CEN = 0;
// ADC
AD1CON1bits.ADON = 0; // Disable module (PIC24FJ256GA702 datasheet p.291 Register 24-1)
//Output Compare With Dedicated Timers
RPOR3bits.RP6R = 13; // Assign MCCP Output Compare to RP6 (MCU Pin #15)
PR2 = PWM_Period; // Set Timer2/3 period
OC1R = PWM_Period * 0; // Set duty cycle at 0%
TMR2 = 0; // Clear TMR2 register
T2CONbits.TON = 1; // Start 16-bit Timer2
OC1CON1bits.OCM = 0b110; // Edge-aligned PWM mode on OC1
/********************** configure MCU modules (end) ***********************/
while (1)
{
OC1R = PWM_Period * 0.00; // Minimum luminous intensity (0% duty cycle)
__delay_ms(250);
OC1R = PWM_Period * 0.25;
__delay_ms(250);
OC1R = PWM_Period * 0.50;
__delay_ms(250);
OC1R = PWM_Period * 0.75;
__delay_ms(250);
OC1R = PWM_Period * 1.00; // Maximum luminous intensity (100% duty cycle)
__delay_ms(250);
}
return 0;
}
Testing
Observe the LED illuminate with respect to the five PWM cycles: 0, 0.25, 0.5, 0.75, and 1.00. An oscilloscope can be used to confirm the PWM cycles are functioning as intended.
Conclusion
The LED appears to illuminate at intensities corresponding to each of the five PWM cycles; hence, the PWM is functioning as expected and can be used for the basis of projects.