Objective
The objective of this laboratory is to demonstrate the function of an externally generated interrupt by using a push-button and a set of LEDs.
Preparation
The following schematic details the hardware setup.
Table 1 lists the components used in the schematic.
ID | Component | Manufacturer Part No. | Value | Qty. |
Base Components | ||||
IC1 | MCU | PIC24FJ256GA702-I/SP | – | 1 |
IC2 | Regulator | LM1117T-3.3/NOPB | 3.3V / 800mA | 1 |
C1 & C2 | Capacitor (tantalum) | TAP106K025SRW | 10uF / 25V | 2 |
C3 & C4 | Capacitor (ceramic) | SR155C103KARTR1 | 0.01uF / 50V | 2 |
C5 & C6 | Capacitor (ceramic) | SR155C104KARTR1 | 0.1uF / 50V | 2 |
C7 & C8 | Capacitor (ceramic) | SR151A150JARTR1 | 15pF / 100V | 2 |
C9 | Capacitor (ceramic) | FG16X7R1E106KRT06 | 10uF / 25V | 1 |
Y1 | Crystal | ABL-16.000MHZ-B2 | 16MHz | 1 |
R1 | Resistor | SFR2500001002FR500 | 10kΩ | 1 |
R2 | Resistor | SFR2500001004FR500 | 1MΩ | 1 |
J1 | Header (6-way) (PICkit 5) | 22-27-2061 | – | 1 |
Additional Components | ||||
R3 – R7 | Resistor | SFR2500001400FR500 | 140Ω | 5 |
R8 | Resistor | SFR2500001002FR500 | 10kΩ | 1 |
D1 – D4 | LED (green) | WP132XGD | 10mA | 4 |
D5 | LED (red) | WP132XID | 10mA | 1 |
C10 | Capacitor (ceramic) | SR155C104KARTR1 | 0.1uF / 50V | 1 |
SW1 | Switch (tactile) | FSM4JART | – | 1 |
Refer to the following source code.
/* Interrupts (source code) */
/* MCU: PIC24FJ256GA702 */
/* Author: Michael */
/**************************** Configuration Bits ******************************/
// FSEC
#pragma config BWRP = OFF // Boot Segment Write-Protect bit (Boot Segment may be written)
#pragma config BSS = DISABLED // Boot Segment Code-Protect Level bits (No Protection (other than BWRP))
#pragma config BSEN = OFF // Boot Segment Control bit (No Boot Segment)
#pragma config GWRP = OFF // General Segment Write-Protect bit (General Segment may be written)
#pragma config GSS = DISABLED // General Segment Code-Protect Level bits (No Protection (other than GWRP))
#pragma config CWRP = OFF // Configuration Segment Write-Protect bit (Configuration Segment may be written)
#pragma config CSS = DISABLED // Configuration Segment Code-Protect Level bits (No Protection (other than CWRP))
#pragma config AIVTDIS = OFF // Alternate Interrupt Vector Table bit (Disabled AIVT)
// FBSLIM
#pragma config BSLIM = 0x1FFF // Boot Segment Flash Page Address Limit bits (Enter Hexadecimal value)
// FOSCSEL
#pragma config FNOSC = PRIPLL // Oscillator Source Selection (Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL))
#pragma config PLLMODE = PLL96DIV4 // PLL Mode Selection (96 MHz PLL. Oscillator input is divided by 4 (16 MHz input))
#pragma config IESO = OFF // Two-speed Oscillator Start-up Enable bit (Start up with user-selected oscillator source)
// FOSC
#pragma config POSCMD = HS // Primary Oscillator Mode Select bits (HS Crystal Oscillator Mode)
#pragma config OSCIOFCN = ON // OSC2 Pin Function bit (OSC2 is general purpose digital I/O pin)
#pragma config SOSCSEL = OFF // SOSC Power Selection Configuration bits (Digital (SCLKI) mode)
#pragma config PLLSS = PLL_PRI // PLL Secondary Selection Configuration bit (PLL is fed by the Primary oscillator)
#pragma config IOL1WAY = OFF // Peripheral pin select configuration bit (Allow multiple reconfigurations)
#pragma config FCKSM = CSDCMD // Clock Switching Mode bits (Both Clock switching and Fail-safe Clock Monitor are disabled)
// FWDT
#pragma config WDTPS = PS1 // Watchdog Timer Postscaler bits (1:1)
#pragma config FWPSA = PR32 // Watchdog Timer Prescaler bit (1:32)
#pragma config FWDTEN = OFF // Watchdog Timer Enable bits (WDT and SWDTEN disabled)
#pragma config WINDIS = OFF // Watchdog Timer Window Enable bit (Watchdog Timer in Non-Window mode)
#pragma config WDTWIN = WIN50 // Watchdog Timer Window Select bits (WDT Window is 50% of WDT period)
#pragma config WDTCMX = WDTCLK // WDT MUX Source Select bits (WDT clock source is determined by the WDTCLK Configuration bits)
#pragma config WDTCLK = SYSCLK // WDT Clock Source Select bits (WDT uses system clock when active, LPRC while in Sleep mode)
// FPOR
#pragma config BOREN = OFF // Brown Out Enable bit (Brown Out Disabled)
#pragma config LPCFG = OFF // Low power regulator control (No Retention Sleep)
#pragma config DNVPEN = DISABLE // Downside Voltage Protection Enable bit (Downside protection disabled when BOR is inactive)
// FICD
#pragma config ICS = PGD1 // ICD Communication Channel Select bits (Communicate on PGEC1 and PGED1)
#pragma config JTAGEN = OFF // JTAG Enable bit (JTAG is disabled)
// FDEVOPT1
#pragma config ALTCMPI = DISABLE // Alternate Comparator Input Enable bit (C1INC, C2INC, and C3INC are on their standard pin locations)
#pragma config TMPRPIN = OFF // Tamper Pin Enable bit (TMPRN pin function is disabled)
#pragma config SOSCHP = ON // SOSC High Power Enable bit (valid only when SOSCSEL = 1 (Enable SOSC high power mode (default))
#pragma config ALTI2C1 = ALTI2CEN // Alternate I2C pin Location (SDA1 and SCL1 on RB9 and RB8)
/************************* Configuration Bits (end) ***************************/
#define FCY 16000000 // FCY = FOSC / 2 (FCY: Instruction clock cycle) (FOSC: System clock cycle)
#define LED_Green_1 LATBbits.LATB15 // LED_Green_1 associated with MCU Pin #26
#define LED_Green_2 LATBbits.LATB14 // LED_Green_2 associated with MCU Pin #25
#define LED_Green_3 LATBbits.LATB13 // LED_Green_3 associated with MCU Pin #24
#define LED_Green_4 LATBbits.LATB12 // LED_Green_4 associated with MCU Pin #23
#define LED_Red_5 LATBbits.LATB11 // LED_Red_5 associated with MCU Pin #22
#include <libpic30.h> // Delay functions
#include <xc.h> // MCU pin mapping
void __attribute__((interrupt, no_auto_psv)) _INT0Interrupt(void) // ISR (External Interrupt 0) (PIC24FJ256GA702 datasheet p.87 Table 8-2)
{
LED_Red_5 = 1; // LED_Red_5 ON
__delay_ms(500);
LED_Red_5 = 0; // LED_Red_5 OFF
IFS0bits.INT0IF = 0; // Clear External Interrupt 0 Flag
}
int main(void)
{
// Set pin direction
TRISBbits.TRISB15 = 0; // MCU Pin #26 output (LED_Green_1)
TRISBbits.TRISB14 = 0; // MCU Pin #25 output (LED_Green_2)
TRISBbits.TRISB13 = 0; // MCU Pin #24 output (LED_Green_3)
TRISBbits.TRISB12 = 0; // MCU Pin #23 output (LED_Green_4)
TRISBbits.TRISB11 = 0; // MCU Pin #22 output (LED_Red_5)
TRISBbits.TRISB7 = 1; // MCU Pin #16 input (Switch_1)
/************************* configure MCU modules **************************/
// Analog Ports
ANSA = 0; // Disable A (PIC24FJ256GA702 datasheet p.126 Table 11-1)
ANSB = 0;
// Comparators
CM1CONbits.CEN = 0; // Disable #1 (PIC24FJ256GA702 datasheet p.310 Register 25-1)
CM2CONbits.CEN = 0;
CM3CONbits.CEN = 0;
// ADC
AD1CON1bits.ADON = 0; // Disable module (PIC24FJ256GA702 datasheet p.291 Register 24-1)
// Interrupt Controller (External Interrupt 0)
INTCON2bits.INT0EP = 1; // Interrupt on negative edge
IFS0bits.INT0IF = 0; // Clear INT0 Interrupt Flag
IEC0bits.INT0IE = 1; // Enable INT0 Interrupt
/********************** configure MCU modules (end) ***********************/
while (1)
{
LED_Green_1 = 1; // LED_Green_1 ON
__delay_ms(500);
LED_Green_1 = 0; // LED_Green_1 OFF
LED_Green_2 = 1;
__delay_ms(500);
LED_Green_2 = 0;
LED_Green_3 = 1;
__delay_ms(500);
LED_Green_3 = 0;
LED_Green_4 = 1;
__delay_ms(500);
LED_Green_4 = 0;
}
return 0;
}
Testing
Observe the four green LEDs illuminating in sequence, representing the CPU processing the Main Code. Press the button and observe the sequence of green LEDs pausing, immediately followed by the red LED illuminating for 500ms and then switching off, representing the execution of the ISR (INT0), followed by the continuation of the green LEDs illuminating in sequence.
Conclusion
It appears that the external interrupt, INT0, is functioning as intended, therefore can be used for the basis of projects.