Objective

The objective of this laboratory is to demonstrate issues associated with switch bounce and how to manage it.

Preparation

The following schematic details the hardware setup.

Table 1 lists the components used in the schematic.

IDComponentManufacturer Part No.ValueQty.
Base Components
IC1MCUPIC24FJ256GA702-I/SP1
IC2RegulatorLM1117T-3.3/NOPB3.3V / 800mA1
C1 & C2Capacitor (tantalum)TAP106K025SRW10uF / 25V2
C3 & C4Capacitor (ceramic)SR155C103KARTR10.01uF / 50V2
C5 & C6Capacitor (ceramic)SR155C104KARTR10.1uF / 50V2
C7 & C8Capacitor (ceramic)SR151A150JARTR115pF / 100V2
C9Capacitor (ceramic)FG16X7R1E106KRT0610uF / 25V1
Y1CrystalABL-16.000MHZ-B216MHz1
R1ResistorSFR2500001002FR50010kΩ1
R2ResistorSFR2500001004FR5001MΩ1
J1Header (6-way)
(PICkit 5)
22-27-20611
Additional Components
R3 – R6ResistorSFR2500001400FR500140Ω4
R7ResistorSFR2500001002FR50010kΩ1
D1 – D4LED (red)WP132XID10mA4
C10Capacitor (ceramic)SR155C104KARTR10.1uF / 50V1
SW1Switch (tactile)FSM4JART1
Table 1: Components

Refer to the following source code.

/*                        Switch_Debounce (source code)                       */  
/*                            MCU: PIC24FJ256GA702                            */
/*                              Author: Michael                               */

/**************************** Configuration Bits ******************************/

// FSEC
#pragma config BWRP = OFF                                                       // Boot Segment Write-Protect bit (Boot Segment may be written)
#pragma config BSS = DISABLED                                                   // Boot Segment Code-Protect Level bits (No Protection (other than BWRP))
#pragma config BSEN = OFF                                                       // Boot Segment Control bit (No Boot Segment)
#pragma config GWRP = OFF                                                       // General Segment Write-Protect bit (General Segment may be written)
#pragma config GSS = DISABLED                                                   // General Segment Code-Protect Level bits (No Protection (other than GWRP))
#pragma config CWRP = OFF                                                       // Configuration Segment Write-Protect bit (Configuration Segment may be written)
#pragma config CSS = DISABLED                                                   // Configuration Segment Code-Protect Level bits (No Protection (other than CWRP))
#pragma config AIVTDIS = OFF                                                    // Alternate Interrupt Vector Table bit (Disabled AIVT)

// FBSLIM
#pragma config BSLIM = 0x1FFF                                                   // Boot Segment Flash Page Address Limit bits (Enter Hexadecimal value)

// FOSCSEL
#pragma config FNOSC = PRIPLL                                                   // Oscillator Source Selection (Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL))
#pragma config PLLMODE = PLL96DIV4                                              // PLL Mode Selection (96 MHz PLL. Oscillator input is divided by 4 (16 MHz input))
#pragma config IESO = OFF                                                       // Two-speed Oscillator Start-up Enable bit (Start up with user-selected oscillator source)

// FOSC
#pragma config POSCMD = HS                                                      // Primary Oscillator Mode Select bits (HS Crystal Oscillator Mode)
#pragma config OSCIOFCN = ON                                                    // OSC2 Pin Function bit (OSC2 is general purpose digital I/O pin)
#pragma config SOSCSEL = OFF                                                    // SOSC Power Selection Configuration bits (Digital (SCLKI) mode)
#pragma config PLLSS = PLL_PRI                                                  // PLL Secondary Selection Configuration bit (PLL is fed by the Primary oscillator)
#pragma config IOL1WAY = OFF                                                    // Peripheral pin select configuration bit (Allow multiple reconfigurations)
#pragma config FCKSM = CSDCMD                                                   // Clock Switching Mode bits (Both Clock switching and Fail-safe Clock Monitor are disabled)

// FWDT
#pragma config WDTPS = PS1                                                      // Watchdog Timer Postscaler bits (1:1)
#pragma config FWPSA = PR32                                                     // Watchdog Timer Prescaler bit (1:32)
#pragma config FWDTEN = OFF                                                     // Watchdog Timer Enable bits (WDT and SWDTEN disabled)
#pragma config WINDIS = OFF                                                     // Watchdog Timer Window Enable bit (Watchdog Timer in Non-Window mode)
#pragma config WDTWIN = WIN50                                                   // Watchdog Timer Window Select bits (WDT Window is 50% of WDT period)
#pragma config WDTCMX = WDTCLK                                                  // WDT MUX Source Select bits (WDT clock source is determined by the WDTCLK Configuration bits)
#pragma config WDTCLK = SYSCLK                                                  // WDT Clock Source Select bits (WDT uses system clock when active, LPRC while in Sleep mode)

// FPOR
#pragma config BOREN = OFF                                                      // Brown Out Enable bit (Brown Out Disabled)
#pragma config LPCFG = OFF                                                      // Low power regulator control (No Retention Sleep)
#pragma config DNVPEN = DISABLE                                                 // Downside Voltage Protection Enable bit (Downside protection disabled when BOR is inactive)

// FICD
#pragma config ICS = PGD1                                                       // ICD Communication Channel Select bits (Communicate on PGEC1 and PGED1)
#pragma config JTAGEN = OFF                                                     // JTAG Enable bit (JTAG is disabled)

// FDEVOPT1
#pragma config ALTCMPI = DISABLE                                                // Alternate Comparator Input Enable bit (C1INC, C2INC, and C3INC are on their standard pin locations)
#pragma config TMPRPIN = OFF                                                    // Tamper Pin Enable bit (TMPRN pin function is disabled)
#pragma config SOSCHP = ON                                                      // SOSC High Power Enable bit (valid only when SOSCSEL = 1 (Enable SOSC high power mode (default))
#pragma config ALTI2C1 = ALTI2CEN                                               // Alternate I2C pin Location (SDA1 and SCL1 on RB9 and RB8)

/************************* Configuration Bits (end) ***************************/

#define FCY 16000000                                                            // FCY = FOSC / 2 (FCY: Instruction clock cycle) (FOSC: System clock cycle)
#define LED_Red_1 LATBbits.LATB6                                                // LED_Red_1 associated with MCU Pin #15
#define LED_Red_2 LATBbits.LATB7                                                // LED_Red_2 associated with MCU Pin #16
#define LED_Red_3 LATBbits.LATB8                                                // LED_Red_3 associated with MCU Pin #17
#define LED_Red_4 LATBbits.LATB9                                                // LED_Red_4 associated with MCU Pin #18
#define Switch_1 PORTBbits.RB10                                                 // Switch_1 associated with MCU Pin #21

#include <libpic30.h>                                                           // Delay functions
#include <xc.h>                                                                 // MCU pin mapping

int main(void)                           

{
    
    // Set pin direction 
    TRISBbits.TRISB6 = 0;                                                       // MCU Pin #15 output (LED_Red_1) 
    TRISBbits.TRISB7 = 0;                                                       // MCU Pin #16 output (LED_Red_2) 
    TRISBbits.TRISB8 = 0;                                                       // MCU Pin #17 output (LED_Red_3) 
    TRISBbits.TRISB9 = 0;                                                       // MCU Pin #18 output (LED_Red_4) 
    TRISBbits.TRISB10 = 1;                                                      // MCU Pin #21 input (Switch_1)
    
    /************************* configure MCU modules **************************/
    
    // Analog Ports
    ANSA = 0;                                                                   // Disable A (PIC24FJ256GA702 datasheet p.126 Table 11-1)
    ANSB = 0;
    
    // Comparators
    CM1CONbits.CEN = 0;                                                         // Disable #1 (PIC24FJ256GA702 datasheet p.310 Register 25-1)
    CM2CONbits.CEN = 0;                                                         
    CM3CONbits.CEN = 0;                                                                                                                          
    
    // ADC
    AD1CON1bits.ADON = 0;                                                       // Disable module (PIC24FJ256GA702 datasheet p.291 Register 24-1)
    
    /********************** configure MCU modules (end) ***********************/
    
    uint8_t Counter = 0;                                                        // Global variable (Counter) 8-bits 

    while (1)
    {   
        
        while (Switch_1 == 1);                                                  // Wait until Switch_1 closed
          
        Counter ++;                                                             // Increase value of Counter by one

        if (Counter > 4)
        {
            Counter = 1;
        }

        while (Switch_1 == 0);                                                  // Wait until Switch_1 opened
         
        if (Counter == 1)
        {
            LED_Red_1 = 1;                                                      // LED_Red_1 ON
            LED_Red_2 = 0;                                                      // LED_Red_2 OFF                                            
            LED_Red_3 = 0;                                                          
            LED_Red_4 = 0;                                                          
        }

        else if (Counter == 2)
        {
            LED_Red_1 = 0;                                                          
            LED_Red_2 = 1;                                                          
            LED_Red_3 = 0;                                                          
            LED_Red_4 = 0;                                                          
        }

        else if (Counter == 3)
        {
            LED_Red_1 = 0;                                                          
            LED_Red_2 = 0;                                                          
            LED_Red_3 = 1;                                                          
            LED_Red_4 = 0;                                                           
        }

        else
        {
            LED_Red_1 = 0;                                                   
            LED_Red_2 = 0;                                                   
            LED_Red_3 = 0;                                                   
            LED_Red_4 = 1;                                                    
        }
                      
    } 
    
    return 0;
    
}
Testing

Press the button repeatedly and observe the LEDs illuminating in sequence without skipping. The capacitor acts as a low-pass filter, removing high-frequency noise from the switch “bouncing” by temporarily shorting the switch to ground. This can be understood by the current through a capacitor with respect to the change in voltage, as shown in Equation 1.

\begin{equation}
\tag{1}
i(t) = C \frac{dv}{dt}
\end{equation}

Remove the 0.1μF capacitor, in parallel with the button, and press the button repeatedly, observing the LEDs illuminating not in sequence.

Conclusion

It appears that using a capacitor “solves” the bounce issue; however, depending on the application, this method can be acceptable for projects. For other applications, such as sensitive control systems, this method is unacceptable. A more robust method is required, featuring more components and perhaps software debouncing.